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Abstract
We take as a starting point the ground-state electron density in two-electron
model atoms in which Coulomb confinement in the He atom is first replaced
by harmonic restoring forces. Switching off electron–electron interactions,
one readily constructs a third-order differential equation for the ground-state
electron density, as in the recent work of March and Ludeña (2004 Phys. Lett.
A 330 16). We then switch on two different model interactions, first in the
so-called Hookean atom going back to Kestner and Sinanoḡlu (1962 Phys.
Rev. 128 2687), in which e2/r12 is retained as in He, and secondly in the
Moshinsky (1968 Am. J. Phys. 36 52) atom in which Kr2

12

/
2 is switched on.

Some analyticity properties of the low-order linear homogeneous differential
equations which result are next studied. He-like atomic ions are then treated
in the limit of large atomic number Z. In this latter case, one identifies both the
electron–nuclear cusp, or equivalently Kato’s theorem, and the corresponding
electron–electron cusp in the ground-state spatial wavefunction �(r1, r2). A
final comment concerns quantum information and entanglement in relation to
the recent work of Amovilli and March (2004 Phys. Rev. A 69 054302).

PACS numbers: 05.30.Fk, 71.10.Ca, 31.15.Ew, 03.75.Fi

1. Background and outline

The problem of the electronic structure of the He atom remains unsolved to date, in spite
of enormous efforts made since the advent of quantum mechanics. However, using the
ground-state electron density ρ(r) instead of the symmetrical spatial wavefunction �(r1, r2)
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involving the coordinates of both electrons 1 and 2, important progress has been made fairly
recently on model spin-compensated two-electron atoms. In particular, for the Hookean atom,
going back at least to Kestner and Sinanoḡlu [1], in which Coulomb confinement of electrons
to the nucleus in He is now replaced by springs, but the electron–electron repulsion energy
e2/|r1 − r2| is retained in the Hamiltonian, a third-order linear homogeneous differential
equation has been derived by March et al [2] for the ground state density ρ(r) (see equation (9)
for the explicit form). Subsequently, Gál et al [3] have achieved the parallel result for the
He-like atomic ion sequence in the limit of large atomic number Z (see equation (11) later).

In the present study, our aim is different: namely to examine the analyticity properties
of these two differential equations which embrace exactly entanglement properties in the
correlated wavefunctions deduced from the non-relativistic Schrödinger equation. Therefore,
in section 2 almost immediately below we use this equation, together with the basic definition
of ρ(r) from the Schrödinger wavefunction, to deduce the shape of a final differential equation
for ρ(r) for spin-compensated spherical model atoms. Of course, because electron correlation
affects both kinetic and potential contributions entering the Schrödinger equation, the resulting
third-order differential equation for ρ(r), therefore, still involves the wavefunction � as well
as ρ(r) and its low-order derivatives. Nevertheless, section 2 provides a quite fundamental
framework for assessing the effects of wavefunction entanglement on the differential equation
for ρ(r) (for example, one can switch off the electron–electron interaction and can vary
the external potential from Coulombic attraction of electrons to the nucleus to harmonic
confinement as in the Hookean atom model to be discussed in detail in section 3). Section 4 then
contains a mathematical investigation of the analytic properties of the third-order differential
equations currently available. A summary plus proposals for further study constitute
section 5.

2. Towards a differential equation for the ground-state density ρ(r) of a
spin-compensated two-electron atom

Starting from the normalized symmetrical spatial wavefunction �(r1, r2) of such a two-
electron atom, the electron density ρ(r) is defined by

ρ(r) = 2
∫

�2(r, r2) dr2. (1)

Taking the gradient of equation (1), we have

∇rρ(r) = 4
∫

�(r, r2)(∇r�(r, r2)) dr2. (2)

Forming the Laplacian ∇2
rρ(r), we find

∇2
rρ(r) = 4

∫
(∇r�)2 dr2 + 4

∫
�

(∇2
r�

)
dr2 (3)

which has a ready interpretation as a difference between two alternative definitions of kinetic
energy density (see also equation (A.8)). Taking a further gradient, the result is, with r̂
denoting a radial unit vector,

∇r

{∇2
rρ(r)

} = r̂

{
ρ ′′′(r) +

2

r
ρ ′′(r) − 2

r2
ρ ′(r)

}

= 12
∫

(∇r�)
(∇2

r�
)

dr2 + 4
∫

�
(∇r

{∇2
r�

})
dr2. (4)
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This is the point at which the Schrödinger equation satisfied by � can be introduced: namely,

−1

2
∇2

r� − 1

2
∇2

r2
� + [V (r) + V (r2)]� +

e2

|r − r2|� = E�, (5)

where V (r) denotes the external potential, and E is the ground-state energy. Inserting this
result into the right-hand side of (4), we find

r̂

{
ρ ′′′(r) +

2

r
ρ ′′(r) − 2

r2
ρ ′(r)

}
= −24

∫
(∇r�)

(∇2
r�

)
dr2 + 24V (r)

∫
(∇r�)� dr2

+ 24
∫

(∇r�)V (r2)� dr2 + 24
∫

(∇r�)
e2

|r − r2|� dr2

− 24E

∫
�(∇r�) dr2 − 8

∫
�

{∇r

(∇2
r�

)}
dr2

+ (∇rV (r))

∫
�(∇r�) dr2 + 4

∫
�V (r2)(∇r�) dr2

+ 8
∫

�
e2

|r − r2| (∇r�) dr2 − 8E

∫
�(∇r�) dr2. (6)

Grouping the kinetic energy terms together into a contribution r̂T (r), we can write
equation (6) as

r̂

{
ρ ′′′(r) +

2

r
ρ ′′(r) − 2

r2
ρ ′(r)

}
= r̂[T (r) + 24V (r)ρ ′] + 16

∫
V (r2)(∇r�

2) dr2

+ 20
∫

e2

|r − r2| (∇r�
2) dr2 − 24E(∇rρ(r)) − (∇rV (r))ρ(r), (7)

where the spherical symmetry of the two-electron atom has now been introduced.
Quite plainly, electron correlation effects enter the kinetic contribution T (r) and the term∫

e2

|r − r2| (∇r�
2) dr2

involving explicitly the electron–electron interaction. In the following two sections, we
therefore specialize to cases where the differential equations for ρ(r), also of third order (see
also [4]) as in equation (7), are already known from explicit solutions.

3. Model atoms: two differential equations for ρ(r) reflecting the Coulomb repulsion
e2/|r1 − r2| between electrons 1 and 2

3.1. The Hookean atom

Let us begin with the Hookean atom for a specified force constant k = 1/4 in the ‘external’
potential representing harmonic confinement, i.e. for

V (r) = 1
8 r2. (8)

The explicit form of the differential equation for the Hookean atom is [2]

(r4 − r2)ρ ′′′(r) + (4r5 − 4r3 − 2r)ρ ′′(r)
+ (5r6 − 4r4 − 13r2 + 2)ρ ′(r) + (2r7 − 10r3)ρ(r) = 0. (9)

Because one focus of this work is entanglement, it will be instructive to compare equation (9)
with the result neglecting the Coulomb interaction, when �(r, r2) → φ(r)φ(r2): a separable
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Table 1. Polynomial coefficients Pi(r, α) of the differential equation (11) for He-like atomic ions
in the limit of large atomic number Z, with y = Zr , taken from equations (20)–(23) of [3].

P0(r, α) = 4[9 + 72α + (18 + 240α)y − (48 − 384α)y2 − (144 − 384α)y3 − (160 − 256α)y4]
P1(r, α) = 2[9 + 144α + 528αy − (138 − 912α)y2 − (360 − 960α)y3 − (400 − 640α)y4]/(Z − α)

P2(r, α) = 2[36α − (9 − 168α)y − (54 − 336α)y2 − (144 − 384α)y3 − (160 − 256α)y4]/(Z − α)2

P3(r, α) = [24αy − (9 − 72α)y2 − (36 − 96α)y3 − (40 − 64α)y4]/(Z − α)3

function. The corresponding differential equation for this independent-particle model with the
same force constant k = 1/4 can be extracted from the study of Howard et al [5] and reads

r2ρ ′′′ + 16rρ ′′ + [−16 + 8r2 − r4]ρ ′ + 3r3ρ = 0. (10)

In section 4, the analyticity of equation (9) derived from a wavefunction involving entanglement
due to the Coulombic repulsion between electrons will be compared and contrasted with the
independent particle equation (10). But first let us turn to the important sequence of He-like
atomic ions.

3.2. He atomic ions in the limit of large atomic number Z

An equation paralleling equation (9) for the Hookean atom model has been derived
subsequently by Gál et al [3] for the He-like atomic ion sequence in the limit of large atomic
number Z. Of course, it is just in this large Z limit that relativistic effects become significant, so
we shall term it a ‘non-relativistic’ model. We quote first the third-order differential equation
of the form

3∑
i=0

Pi(r)ρ
(i)(r) = 0, (11)

where the polynomials Pi(r) are collected in table 1, using the work of Gál et al [3]. The
quantity α in table 1 indicates that the ‘unperturbed’ solution, before switching on the Coulomb
repulsion, involves the ‘screening’ of −Ze2/r to −(Z − α)e2/r (see also Hall et al [6]).

Again, this equation (11) stems from a wavefunction involving entanglement, but now due
to a ‘weak’ electron–electron interaction because of the large Z limit (see the initial derivation
of an explicit form of the ground-state electron density ρ(r) by Schwartz [7]).

We aim in section 4 to compare and contrast the analyticity properties of equation (11) with
the corresponding independent particle model. This can be obtained, after a short calculation,
from the work of Howard et al [8] and reads, in a form corresponding to the exact equation (11)
in this large Z limit including electron–electron interaction, but now for α = 0 only:

r2ρ ′′′ + (3Zr2 − 4r)ρ ′′ + (2Z2r2 − 10Zr + 6)ρ ′ − (4Z2r − 12Z)ρ = 0, (12)

the differences between equation (11) for α = 0 and equation (12) reflecting again, of course,
electron–electron repulsion.

4. Non-analyticity properties of the Hookean atom and He-like large Z limit models

Our purpose in this section is now to study the analyticity properties of equations (9) and (11)
for the Hookean atom and for He-like atomic ions in the limit of large Z, respectively. Both of
these density differential equations result from wavefunctions with entanglement.

4.1. The Hookean atom

The most relevant difference between equation (9) for the ground-state density of the Hookean
atom and for the limiting equation (10) when the interaction e2/r12 between the two electrons
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Figure 1. Solutions of P3(r, α) = 0 for different non-zero values of α are shown. For α = 5/8,
there are two complex roots in addition to a double root at α = 0. Increasing α, we find two
complex roots of decreasing imaginary part and a real negative root (all the three approaching a
negative real value as α → (3 + 2

√
3)/8), plus a root which remains at the origin.

at separation r12 is ‘switched-off’ is that the highest order derivative ρ ′′′ is multiplied by the
polynomial (r4 − r2) for equation (9) with interaction and simply by r2 for the non-interacting
limit (10). Therefore, dividing through to remove these factors, it becomes clear that whereas
r = 0 is a singular point of both equations (9) and (11), a new singularity is introduced by the
polynomial (r4−r2), that on the positive real axis being evidently at r = 1. This is clearly then
the ‘fingerprint’ for the Hookean atom of the electron–electron interaction, which was quite
evident in the ground-state wavefunction �(r1, r2) entering equation (1), before integrating
over r2 to obtain the electron density ρ(r). The new ‘singularity’ we suggest is coming from
the electron–electron cusp which occurs in the wavefunction �(r1, r2), as r1 − r2 tends to
zero. This leaves, as already stressed, its fingerprints in equation (9) which are, of course, lost
in the independent-particle limiting equation (10).

4.2. He-like ions at large atomic number Z

We next turn to the He-like differential equation (11), with the polynomials given in table 1.
The aim again is to compare and contrast this (now from a weakly entangled wavefunction,
because of the large Z limit) equation (11) with the corresponding non-interacting limit (12).

For orientation, let us put α = 0 in P3(r, α) recorded in table 1 to find, with y = Zr ,

P3(r, 0) = (−9y2 − 36y3 − 40y4)/Z3. (13)

This is to be contrasted with the non-interacting equation (12) where the highest derivative
ρ ′′′ is again multiplied by r2 as in the non-interacting counterpart (10) for the Hookean atom
already treated.

The solutions of equation (13) equated to zero are such that one obvious solution is
y = r = 0. The marked difference from the Hookean atom equation (9) is that there are now
no other solutions of equation (13) for real positive r, though, of course, non-analyticities exist
in the complex plane.

Because of this, we have examined further the effect of re-defining the ‘unperturbed’
solution, before switching on the Coulombic inter-electronic repulsion characterized by the
constant α introduced following equation (11), and altering the polynomials Pi(r, α) as
recorded in table 1. We have examined the solutions of P3(r, α) = 0 for various values
of α, especially for α � 5/8. Figure 1 is designed to show the general effect of α when
P3(r, α) in table 1 is used to transcend equation (13) for α �= 0.



3746 N H March et al

5. Summary and future directions

The non-analyticity of the third-order differential equations (9) and (11) embodying the
Coulomb repulsion energy e2/r12 between electrons 1 and 2 at separation r12 is best seen by
comparing the coefficients of the highest derivative ρ ′′′ with the corresponding non-interacting
limits. Thus, for the Hookean atom, with differential equation (9), ρ ′′′ is multiplied by the
polynomial (r4 − r2) in the presence of the Coulomb interaction, whereas in equation (10),
the non-interacting limit of equation (9), there is only the factor r2. For equation (9), there is
now non-analytic behaviour when (r4 − r2) = 0, i.e. in particular at the physically significant
solutions r = 0 and r = 1. The latter solution is entirely due to the Coulombic correlation
between the two electrons, and thus is a quite clear fingerprint of entanglement in the ground-
state wavefunction of the Hookean atom.

Turning to the non-relativistic ‘model’ of the He-like atomic ion sequence in the limit of
large atomic number Z, the differential equation (11), with polynomials Pi(r) recorded in
table 1, embodies wavefunction entanglement, whereas equation (12) records the
corresponding independent-particle limit. Again, for equation (12), the only non-analyticity
is at r = 0, whereas the polynomial P3(r) recorded in table 1 has non-analyticity away from
r = 0, but not on the real axis as is the case for the Hookean atom.

As to future directions, it would, of course, be of outstanding interest if the large Z limit
of the He-like sequence of atomic ions could be relaxed, even to the next lowest order in 1/Z.
The coefficient of ρ ′′′ appears all important with regard to the non-analytic behaviour induced
by electron–electron interaction, and even the inclusion of the next order in 1/Z should be
illuminating for the long-standing problem of the He atom itself. Finally, we think also that it
would be interesting for the future if work along the lines reported in the present study could
be brought into close contact with the recent ideas of Amovilli and March [9] on entanglement
and quantum information. The considerations of the present study suggest that the first-order
density matrix γ (r, r′) (see also appendices A and C) may be the appropriate tool to use in
forging such a link.
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Appendix A. Harmonic confinement with general interparticle interaction

The purpose of this appendix is two-fold. First, we relate the Hookean model, given some
prominence in the main text, to the model of Moshinsky [10]. Both are built around harmonic
confinement, but the difference between the two models resides in different interparticle
interactions: Coulombic repulsion for the Hookean model and harmonic for the Moshinsky
case. Secondly, having forged the relation for these two models, we treat harmonic confinement
for general interparticle u(r12) within the present context, drawing on the first-principles theory
set out by Holas et al [11].
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The point we wish to stress, from section 2, is that ∇2ρ is related to the difference
between two definitions of kinetic energy density. These are written in section 2 in terms
of the Schrödinger wavefunction �(r1, r2), but it will be helpful below, for compactness,
to write them in terms of the exact first-order density matrix γ (r1, r2) discussed by Holas
et al [11].

Then, we have that

1

4
∇2ρ(r1) = − h̄2

2m

[∇2
r1

γ (r1, r2) − ∇r1 · ∇r2γ (r1, r2)
]
r2=r1

. (A.1)

To avoid repetition, we emphasize at once that in Holas et al [11] the common element
connecting ρ(r1) and γ (r1, r2) is the relative motion (RM) wavefunction. Thus, in terms of
relative coordinates r1 −r2 and centre-of-mass (CM) coordinate R = (r1 + r2)/2, �(r1, r2)

separates as

�(r1, r2) = �RM(r)�CM(R), (A.2)

where r = |r1 − r2| and R = |R|. Writing �RM(r) in terms of ψRM(r) defined by

ψRM(r) =
√

4πr �RM(r), (A.3)

normalized to
∫ ∞

0 dr[ψRM(r)]2 = 1, this relative motion wavefunction is shown by Holas
et al [11] to satisfy the radial Schrödinger equation[

− h̄2

2m

(
d

dr

)2

+ Veff(r)

]
ψRM(r) = ERM ψRM(r). (A.4)

In equation (A.4), Veff(r) is given explicitly by

Veff(r) = mRM ω2
0r

2

2
+ u(r), mRM = m

2
, (A.5)

with u(r12), as noted above, the general interparticle interaction. What is now to be emphasized
in the present context is that Holas et al [11] determine both ρ(r1) and γ (r1, r2) entering
equation (A.1) in terms of ψRM(r) and explicitly known functions. We write the simplest
diagonal form only here, namely

ρ(r1) = 8√
π

exp

(−r2
1

a2
CM

) ∫ ∞

0
y2 e− y2

4 [�RM(aCMy)]2 sinh(r1y/aCM)

(r1y/aCM)
dy. (A.6)

Here aCM has dimensions of length and is defined by

aCM =
√

h̄

mCM ω0
, mCM = 2m, ω2

0 = km−1. (A.7)

Evidently, since γ (r1, r2), as shown in [11], is also characterized by �RM(r) plus known
functions, one can regard, in this context of harmonic confinement, γ (r1, r2) = γ (r1, r2, [ρ]),
the essential link between γ and ρ being �RM characterized by equations (A.4) and (A.5).
Using the form of γ (r1, r2) obtained by Holas et al [11] for this harmonic confinement model
and given explicitly in their equation (20), we can write equation (A.1), for the specific case
of the Hookean atom where u(r12) = e2/r12, as

1
4∇2ρ(r1) = tg(r) − t (r), (A.8)

where t (r) is the first term on the right-hand side of equation (A.1) which we calculate directly
as

t (r) = −C2 π e−r2

16r

{
8r(−8 + r2) +

√
2π er2/2(−34r − 3r3 + r5)

+ 4
√

2π er2/2(−7r2 + r4) erf

(
r√
2

)}
. (A.9)
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1 2 3 4 5

2

4

6

tW

tg

Figure 2. Correlated radial kinetic energy contribution 4πr2tg(r) compared with single-particle
counterpart 4πr2tW (r), for the Hookean atom with force constant k = 1/4. Difference between
these two kinetic energy densities is a quantitative measure of entanglement.

The corresponding result for tg(r), deriving from the gradient of the wavefunction form of
kinetic energy, is

tg(r) = C2 π e−r2

16r

{
8r(−2 + r2) +

√
2π er2/2(4r + 3r3 + r5)

+ 4
√

2π er2/2(2 − r2 + r4) erf

(
r√
2

)}
, (A.10)

where C2 = 1/[2π5/4(5π1/2 + 8)1/2].
We have then shown that ∂r(t − tg) can be written solely in terms of the density ρ and its

low-order derivatives. Equation (9) follows using equation (A.8).
Using the positive-definite kinetic energy tg(r) in equation (A.10), we have plotted in

figure 2 the radial distribution 4πr2tg(r) versus r. For comparison, we have used the known
analytic form of the ground state density ρ(r) to compare with the single-particle kinetic
energy which has the Weizsäcker form tW (r) = (1/8)(∇ρ)2/ρ. The difference between these
two curves is a clear measure of entanglement.

To conclude this appendix, we turn to discuss results corresponding to equations (A.9)
and (A.10) for the so-called Moshinsky atom. Here, the external potential is V (r) = 1

2 r2 and

u(r12) = 1
2Kr2

12. (A.11)

Then

ρ(r) = 2

(
β

π

)3/2

exp(−βr2), (A.12)

with β = (2α − 1)/α while

α = 1
2 [(1 + 2K)1/2 + 1]. (A.13)

The differential equation for ρ(r) is readily verified to be

∇2ρ = (−6β + 4β2r2)ρ (A.14)

and hence from equation (A.8) it follows that

4[tg(r) − t (r)] = (−6β + 4β2r2)ρ. (A.15)

Holas, Howard and March [11] give the explicit form of tg(r) as

tg(r) = 1

2
ρ(r)

[
3

2

(α − 1)2

α
− (2α − 1)

α
ln

(
ρ(r)

ρ(0)

)]
, (A.16)

where, from equation (A.12), ρ(0) = 2(β/π)3/2.
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Figure 3. As in figure 2, but now for the Moshinsky model atom. The parameter α defined in
equation (A.13) for plot of 4πr2tg(r) is taken for the case K = 1. The single-particle kinetic
energy contribution 4πr2tW (r) corresponds to tW (r) = (1/8)(∇ρ)2/ρ for the same density.

Substituting equation (A.16) into (A.15), we thus obtain the alternative form of kinetic
energy density t (r) as

t (r) = tg(r) +

(
3

2
β + β2r2

)
ρ(r) = 1

2
ρ(r)

[
3

2

(α − 1)2

α
+ 3β + 2β2r2

]

− (2α − 1)

2α
ρ(r) ln

(
ρ(r)

ρ(0)

)
. (A.17)

That equations (A.16) and (A.17) have connections with information theory is apparent from
the appearance of a term proportional to ρ(r) ln ρ(r) in both these forms of kinetic energy
density for the Moshinsky model of the two-electron spin-compensated atom.

In figure 3, kinetic energy densities are again plotted, to display entanglement.

Appendix B. Case when repulsive interparticle interaction u(r12) = λr−2
12

Again, with harmonic confinement, Capuzzi, March and Tosi [12] have obtained the ground-
state density ρ(r) when the external potential V (r) = mω2r2/2 and the repulsive interaction
u(r12) is determined by

u(r12) = λr−2
12 . (B.1)

Capuzzi et al [12] obtain the density as

ρ(r) = 1

2α−1π3/2

(mω

h̄

)3/2
exp(−2mωr2/h̄)1F1

(
3

2
+ α; 3

2
; mωr2

h̄

)
. (B.2)

These workers then derive the second-order linear homogeneous differential equation

h̄

4mω
rρ ′′(r) +

[
h̄

2mω
+

3

2
r2

]
ρ ′(r) + r

[
3

2
− α +

2mω

h̄
r2

]
ρ(r) = 0 (B.3)

satisfied by ρ(r) in equation (B.2).
Our purpose below is to use equation (3), and the wavefunction �(r, r2) of this model

to derive the two alternative definitions of the kinetic energy density. The first of these is the
positive definite form

tg(r) =
∫

(∇r�(r, r2))
2 dr2, (B.4)

while the other takes the form

t (r) = −
∫

�(r, r2)∇2
r�(r, r2) dr2. (B.5)
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Figure 4. Kinetic energy densities 4πr2tg(r) and single-particle counterpart 4πr2tW (r) for inverse
square-law repulsion. Correlated tg(r) curve now shows structure whereas tW (r) is smooth. Again
difference between tg(r) and tW (r) reflects entanglement in the wavefunction (B.6). The parameter
value λm/h̄2 in equation (B.7) is chosen equal to 2, while mω/h̄ is taken as unity.

Using the unnormalized spatial symmetric wavefunction for the ground state given by
Crandall et al [13], namely

�(r, r2) = exp(−mωr2/2h̄) exp
(−mωr2

2

/
2h̄

)|r − r2|α, (B.6)

where

α = [(1 + 4λm/h̄2)1/2 − 1]/2, (B.7)

we find

∇r�(r, r2) = r̂(−mωr/h̄)�(r, r2) +
α

|r − r2| (∇r|r − r2|)�(r, r2). (B.8)

Hence, from equation (B.4), we find

tg(r) = m2ω2r2

h̄2

∫
�2(r, r2) dr2 +

∫
α2

|r − r2|2 (∇r|r − r2|)2�2(r, r2) dr2

− 2α

∫
1

|r − r2|
mωr

h̄
(r̂ · ∇r|r − r2|)�2(r, r2) dr2. (B.9)

The first integral on the right-hand side of equation (B.9) is equal to ρ(r)/2, where ρ(r) is
given by equation (B.2).

Figure 4 shows plots of correlated and single-particle kinetic energy densities.

Appendix C. Entanglement: inequality relating electron density to first-order
density matrix

For a two-electron spin-compensated system without entanglement, the first-order density
matrix γ /2 is idempotent. When entanglement is introduced by switching on an interparticle
interaction u(r12) between the two ‘electrons’ at separation r12, then∫

γ (r, r2)

2

γ (r2, r
′)

2
dr2 <

γ (r, r′)
2

. (C.1)

The simplest consequence in the present framework built round the ground-state electron
density ρ(r) ≡ γ (r, r) is evidently

ρ(r) >
1

2

∫
γ 2(r, r2) dr2. (C.2)
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As the most elementary example of the cases treated in the present paper, let us return to
the Moshinsky model, for which the ground-state electron density ρ(r) is of the Gaussian form
both with or without the harmonic interparticle interaction u(r12) = Kr12/2. One of us [14]
demonstrated in earlier work on this model that γ (r, r′) could, in fact, be written explicitly in
terms of ρ(r) (see also [11], especially equation (36)). For u(r12) = 0, i.e. K = 0,

γu=0(r, r2) = ρ(r)1/2ρ(r2)
1/2, (C.3)

and insertion into the right-hand side of the inequality (C.2) gives immediately
1
2ρ(r)

∫
ρ(r2) dr2 = ρ(r) from the normalization of the density for the two-electron atom.

From the result (36) of [11], the inequality (C.2) is recovered with entanglement, i.e. when
K �= 0.

To date, from the other entangled models discussed here, we have not achieved explicitly
the function γ = γ [ρ] exhibited in [14] for the Moshinsky model.
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[1] Kestner N R and Sinanoḡlu O 1962 Phys. Rev. 128 2687
[2] March N H, Gál T and Nagy Á 1998 Chem. Phys. Lett. 292 384
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